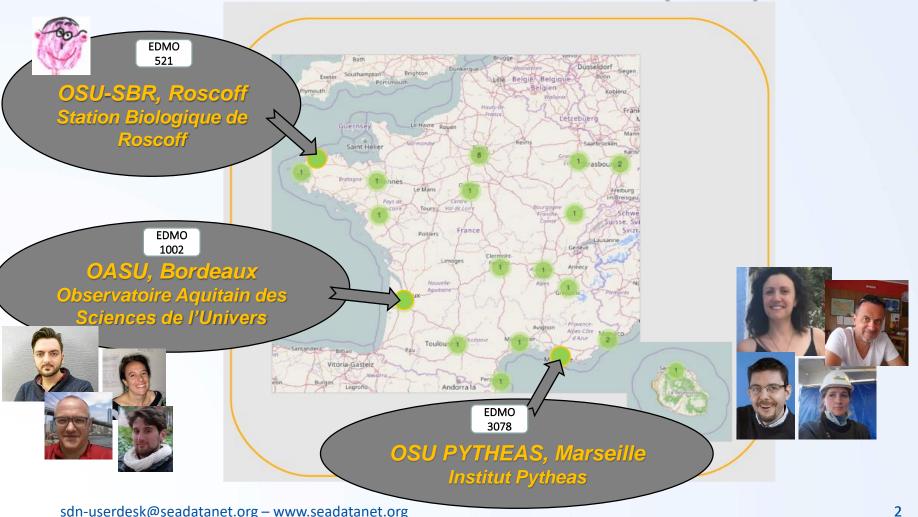
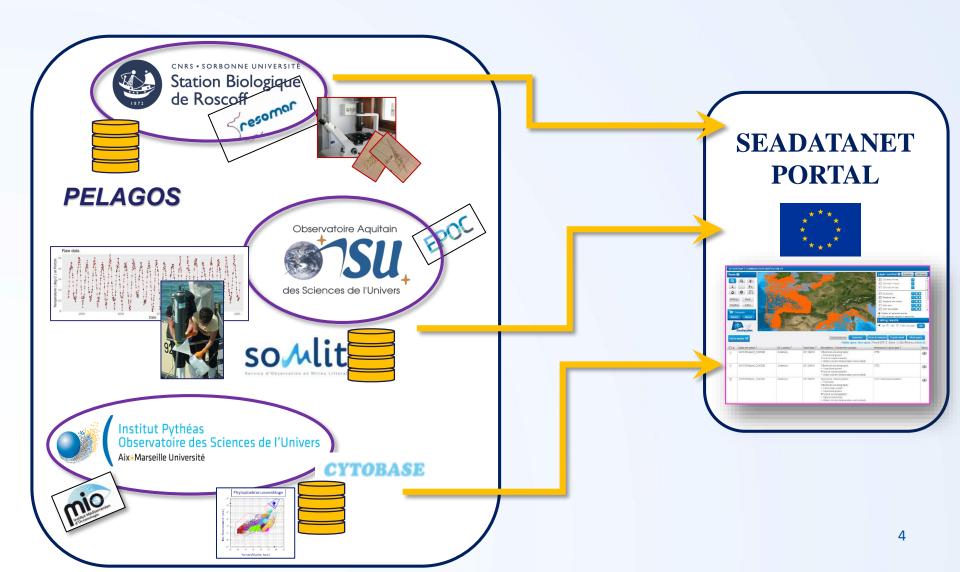


- François Gaudin, Fabrice Mendes, Pascal Calvat, <u>Yolanda del Amo</u> OASU, UMS POREA 2567, UMR EPOC 5805 Université de Bordeaux
- Soumaya Lahbib, Maurice Libes, LLoyd Izard, Melilotus Thyssen, Gérald Grégori MIO UMR 7294, OSU Pytheas UMS 3470 Université Aix Marseille
- Mark Hoebeke, Fabienne Rigaut, Nathalie Simon Station Biologique de Roscoff, CNRS Sorbonne Université



3 (out of 27) Observatories of the Science of the Universe (OSU)


The National Observation Services (NOS)

French observation networks structuration within the Research Infrastructure for Coastal Ocean and Seashore ILICO

The datasets & the databases

Flow Cytometry (FCM) data - CYTOBASE

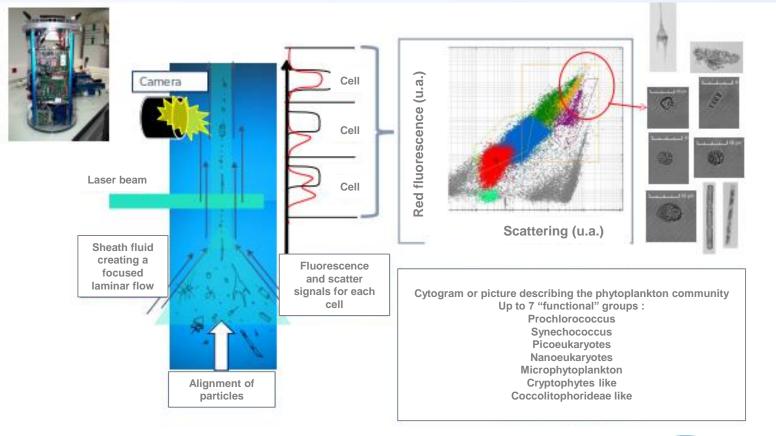
Context & Initial aims

- Flow cytometry expert team at MIO (Melilotus Thyssen and Gerald Gregori)
- Many scientific campaigns and projects (67 CDIs)
- Abundant and complex data treatment
- Needs (objectives)
 - efficient software tools & workflow to manage data
 - interoperability for sharing data

SeaDataCloud WP9.2.5

"Ingesting, validating, long-term storage and access of Flow Cytometry data"

1


- FCM Common Vocabulary
- Data Transport Format for FCM data
- Ingestion into SDN Infrastructure

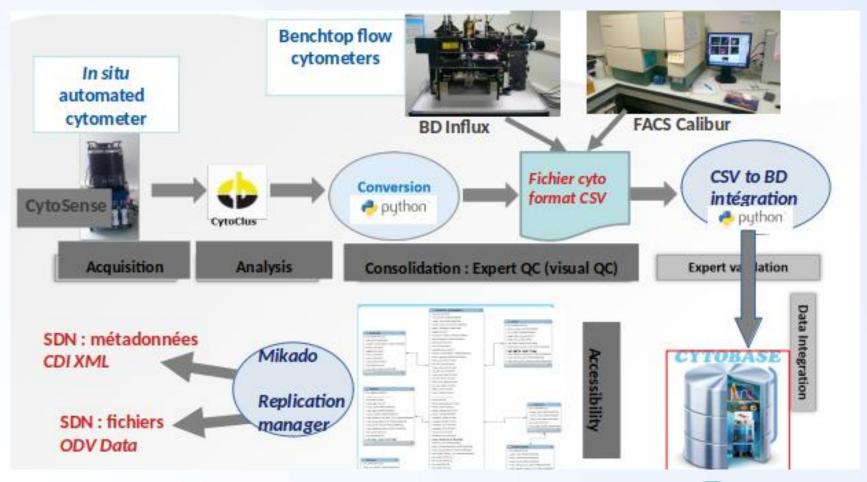
Flow cytometry (FCM) for marine research

Flow cytometry (FCM) for marine research

- nom_cruise :
- num_stat :
- sampling_date, analysis_date
- longitude / latitude
- sdn_local_cdi_id : FA35102016_CHROME_OCT_2016_FCMW
- sdn_edmo_code : 3078
- COL instrument : tool1209
- bot depth + depth :
- vol ech:
- sdn_ClusterName : Coccolithophores
- sdn_ClusterNameID : <u>SDN:F02::F0200007</u>
- abundance : 19.4796
- Optical properties: Red Fluorescence, Orange Fluorescence, Forward Scatter, Side Scatter
 - moy_tot_FLR QV_moy_tot_FLR sd_tot_FLR QV_sd_tot_FLR
 - moy_tot_FLO QV_moy_tot_FLO sd_tot_FLO QV_sd_tot_FLO
 - moy_tot_FWS QV_moy_tot_FWS sd_tot_FWS QV_sd_tot_FWS
 - moy_tot_SWS QV_moy_tot_SWS sd_tot_SWS QV_sd_tot_SWS

Flow Cytometry (FCM) data - CYTOBASE

For SDC tasks...


- Need to manage in situ real time flow cytometry data
- Converting FCM data files into CSV readable format (++ Python quality controls)
- Adding metadata
- Producing a common standard FCM voc.
- Inserting FCM data into a DB in order to perform queries (++ Python quality controls)
- → Sharing FCM data with scientific community (with metadata, with QC, in interoperable formats)

Flow Cytometry data workflow

specie's names

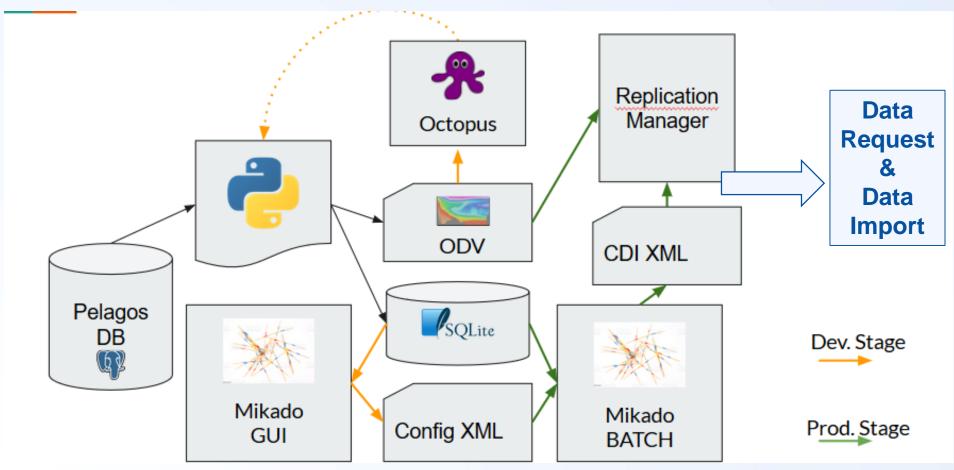
Microphytoplankton biodiversity data -**PELAGOS DB**

Context & Initial aims

- abundances Publishing biodiversity datasets (2 CDIs)
- Long-term coastal phytoplankton biodiversity data from NOS
- 24 measurements / year, since April 2000
- Time-consuming analysis through optical microscopy by experts
- Storage in the national PELAGOS DB hosted at Roscoff Marine Station

Expected Main Challenges

- Mapping PELAGOS data models with SeaDataNet
- Automating the workflow, from data extraction to data publishing


Expected Minor Challenges

- Setting up SDN technical components
- Mastering SDN tools

Microphytoplankton biodiversity data workflow

Physical, chemical, biological data – SOMLIT NOS DB

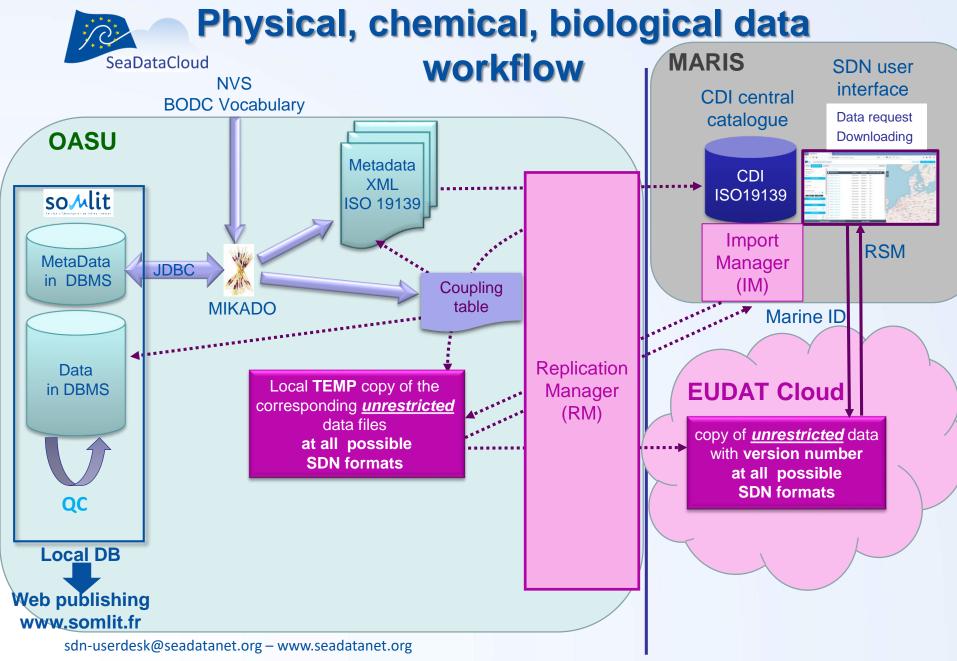
Context & Initial aims

- · Bimonthly sampling from 1996
- 16 Essential Ocean Variables & pico-nano-plankton
- 12 ecosystems
- 3 main data types
 - hydro-biol. time-series (50 CDIs)
 - ❖ CTD (3913 CDIs)
 - pico-nano-plankton FCM (20 CDIs)
- QC checks

But

- Metadata missing in DB
- Human approbation needed for data distribution
- File format not official standards

Challenges


- Integrating all metadata (contacting every expert in the 12 stations)
- Discovering & Learning SDN ecosystem
- Mapping data models

Main Goal

- International DB publishing
- International standards

Feedback statement - PROs & CONs

PROs

- ✓ SDN allows the distribution of data in standard formats through a nice and intuitive interface: datasets available in SDN (no more sending mails with attachments)
- ✓ *European visibility* of flow cytometry and SOMLIT data, laboratories, projects and originators (marine stations and labs)
- ✓ Interoperability with standardization of data file formats, and parameter names
- ✓ Gives a framework for data management in a standardized way.
- ✓ Work in harmony and in accordance with the requirements of national datapoles (e.g. Odatis)
- ✓ Definition of a **standardized BODC controlled vocabulary** among cytometrists
- ✓ Excellent help (& THANKS !!!)
 - From collating centre (IFREME ______ N userdesk, CDI-help desk
 - Training sessions (general and personal)
 - Documentation
 - "Informal" mail exchange with knowledgeable insiders

Feedback statement - PROs & CONs

PROs

- ✓ SDN allows the distribution of data in standard formats through a nice and intuitive interface: datasets available in SDN (no more sending mails with attachments)
- ✓ European visibility of flow cytometry and SOMLIT data, laboratories, projects and originators (marine stations and labs)
- ✓ Interoperability with standardization of data file formats, and parameter names
- ✓ Gives a framework for data management in a standardized way.
- ✓ Work in harmony and in accordance with the requirements of national datapoles (e.g. Odatis)
- ✓ Definition of a **standardized BODC controlled vocabulary** among cytometrists
- ✓ Excellent help (& THANKS !!!)
 - From collating centre (IFREME Nuserdesk, CDI-help desk
 - Training sessions (general and personal)
 - Documentation
 - "Informal" mail exchange with knowledgeable insiders

DIFFICULTIES/ CONs

- ✓ Taming the complexity of SDN workflow, P0n thesaurus and tools (e.g. Mikado, Nemo, RM...)
- ✓ Understanding coupling tables and mapping files format
- ✓ Finding a *compromise* solution for the *detail level* of metadata from long-term series (past analytical/sampling methods) and its feasibility (especially in order not to "cut" series)
- ✓ Length of chain for processing changes (e.g. updating EDIOS or C17 vocabulary list)
- ✓ Metadata control and mapping by research experts was a big task
- ✓ Re-definition of **dataset notion** to match SDNet's: **re-structuration local DB**
- ✓ Underestimation of the developer tasks for matching SDN needs

Feedback statement

NEW METHODS of management?

- ✓ Look out and track updates of BODC Vocs, of European recommendations for standards
- ✓ Use of *thesaurus* and *standard file formats* (e.g. odv, NetCDF...)
- ✓ Addition of QC_Flags to some data types (e.g. CTD)
- ✓ Better *traceability* of data modifications (*e.g.* corrections, adds...)
- ✓ Local and new reflection on « dataset » definition

Issues to keep in mind

- ✓ Data producers need to be (made) aware of the importance of **describing** their datasets using **metadata** as early as possible, and can still be reluctant to participate in this task.
- ✓ There was a significant effort to achieve mapping between the in-house data models and the SDN data format...

 But it should pay off over time as the surveys are standardized.
- ✓ (bio)ODV as we understand it may not be the best suited data format for storing "rich" biodiversity datasets
- ✓ Small improvement : the *reason/objectives* for what users download the data is not displayed in the Import Manager

Thank you,

hoping to keep ingesting new data...

- François Gaudin, Fabrice Mendes, Pascal Calvat, <u>Yolanda del Amo</u> OASU, UMS POREA 2567, UMR EPOC 5805 Université de Bordeaux
- Soumaya Lahbib, Maurice Libes, LLoyd Izard, Melilotus Thyssen, Gérald Grégori MIO UMR 7294, OSU Pytheas UMS 3470 Université Aix Marseille
- Mark Hoebeke, Fabienne Rigaut, Nathalie Simon Station Biologique de Roscoff, CNRS Sorbonne Université

