4th SDC Plenary Meeting, October 30th 2020

SeaDataCloud V2 Climatologies and new products

S. Simoncelli and WP11 team

sdn-userdesk@seadatanet.org - www.seadatanet.org

Production of V2 climatologies and new products is at various stages:

- ready, need to finalize the PIDoc or PIDoc ready for review
- some need final analysis of experiments to launch production and finalize PIDoc
- some are facing computational issues
- some are still in test phase

we expect to have them ready before the end of November for D11.7 and publication

Objectives

- 1. to optimize the workflow
- 2. to ameliorate QC during the data integration process
- 3. to track the metadata of external data
- 4. to improve the quality assessment of climatologies (residuals, cross validation)
- 5. to improve the consistency analysis versus WOA to consider each produced gridded field

	resolution	time cov	Annual	Seasonal	Monthly	External Source
ARC_1	1/4x1/8°	1955-201 9		Х	Х	WOD18
ARC_2	1/4x1/8°	6 decades		х	Х	WOD18
BAL_1	1/16°x1/32°	1955-201 8		х	Х	CORA5.2
BAL_2	1/16°x1/32°	6 decades		х	Х	CORA5.2
NAT_1	1/2°	1955-201 9		х	Х	CORA5.2
NAT_2	1/2°	6 decades		х	Х	CORA5.2
MED_1	1/8°	1955-1984		х	Х	CORA5.2
MED_2	1/8°	1985-201 8		х	Х	CORA5.2
MED_3	1/8°	6 decades		х		CORA5.2
BLS_1	1/8°	1955-2019		х	Х	WOD18, CORA5.2
BLS_2	1/8°	1955-1999		х	Х	WOD18, CORA5.2
BLS_3	1/8°	2000-2019		х	Х	WOD18, CORA5.2
BLS_4	1/8°	6 decades		х		WOD18, CORA5.2
NS_1	1/8°	1955-2014	x		х	WOD18
	1 /0°	C decedes				WOD19 North C

V2 Regional Climatologies

Harmonized approach

- new V2 data input
- cover the time period 1955-2018/9
- adopted WOA standard vertical levels
- integration with external sources: WOD and/or CORA
- all use **DIVAnd**

NS_1	1/8°	1955-2014	x		х	WOD18		
NS_2	1/8°	6 decades		х		WOD18	North Se	ea only V1
NAT_3	1/4°	1955-2019		х	х	CORA5.1		
NAT_4	1/4°	6 decades		х	х	CORA5.1		

V2 climatologies

Product	main activities
GLO	update input WOD18 - NLQC applied to WOD18 - optimized DIVAnd tuning
ARC	update input V2 dataset - DIVAnd uptake
BAL	update input V2 dataset
NAT	update input V2 dataset - DIVAnd uptake (issues due to the large input dataset)
MED	update input V2 dataset - optimized DIVAnd tuning using syntetic profiles from reanalysis - DIVAnd optimization tool – cross validation
BLS	update input V2 dataset, coupled T-S data (to avoid density inversions in merged T-S climatology)

Global Climatologies

Name	horizontal resolution	time coverage	monthly	Data Source		
GLO_1	1/4°	1900-2018	х	WOD18		
GLO_2	1/4°	2003-2018	Х	WOD18		

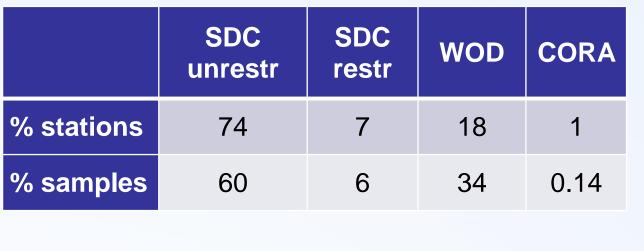
A global SDC product has been created for the first time

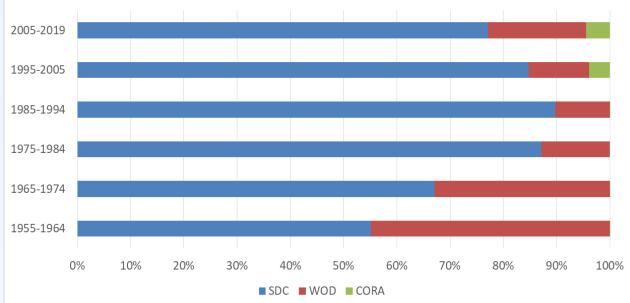
- → two different monthly climatological fields for T and S with a different time coverage, computed from WOD18 data since spatial coverage of SDN data at global scale is still too sparse
- → implemented Non Linear Quality Check
- Next releases would integrate SDN and WOD data

Data integration in SDC (BLS example)

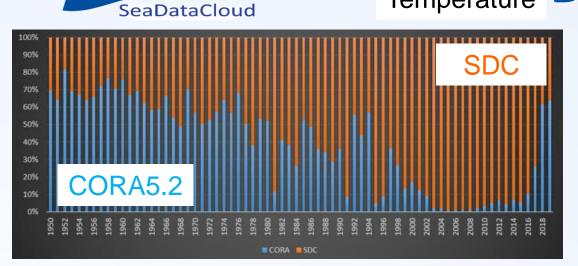
Excluding internal duplicates

- 1605 WOD
- 20915 CORA


Identifying and excluding overlapping data


- 50249 WOD stations overlapping with SDC
- 38131 CORA stations overlapping with SDC and 34985 overlapping with WOD Merging non-overlapping data
- SDC_BLS_DATA_TS_V2 taken as a primary,
- SDC restricted dataset added
- non-overlapping part of the WOD added
- non-overlapping part of the CORA dataset was added

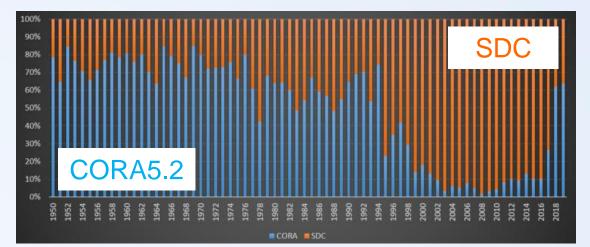
	SDC unrestr icted	SDC restrict ed	WOD	COR A
% stations	74	7	18	1
% samples	60	6	34	0.14


Data integration in SDC (BLS example)

Including data from external data sources significantly increased data availability in BLS 1955-1964 \rightarrow the contribution from external data sources reaches 45%

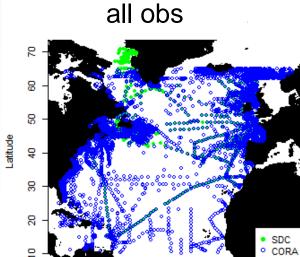
Temperature Data integration in SDC (NAT)

8


8

업

8


8

-atitude

North Atlantic Salinity 1951-1954

Salinity

duplicates

8

육

atitude

SDC

CORA Dbl

Distribution of CORA and SDC data in the final input data set

Longitude

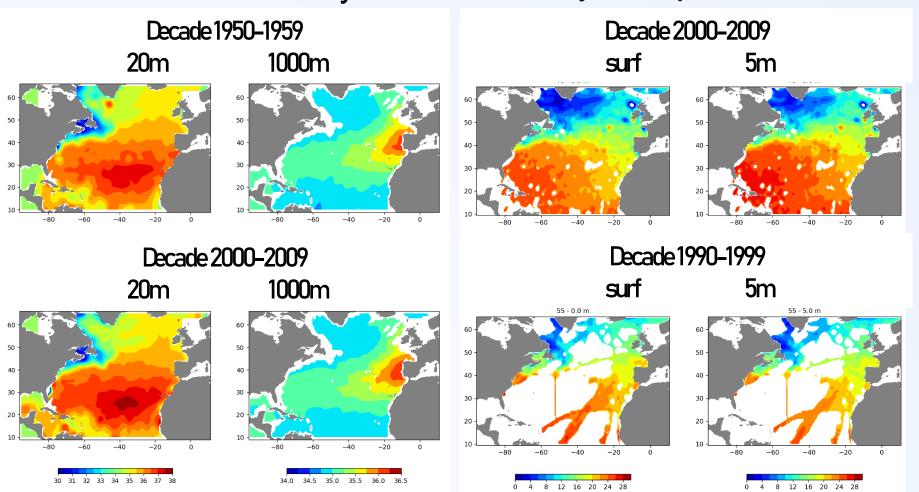
SDC

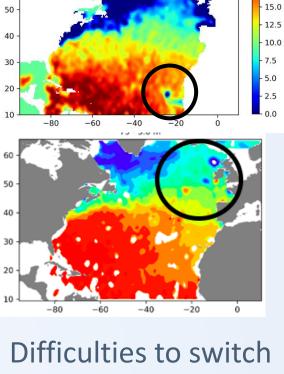
CORA new

Preliminary Quality Control

- Preview (ODV) of WOD and CORA datasets revealed presence of a significant number of anomalous data that were originally flagged as good → additional QC was applied to before data integration in particular to identify and flag
- obvious outliers,
- bad profiles

keeping track of data anomalies through unique station identifier




Preliminary Results (NAT)

60

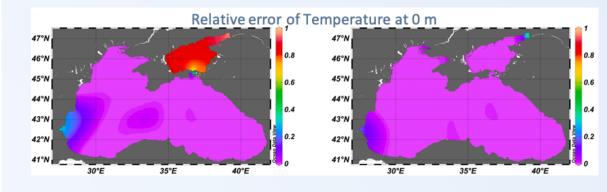
July Temperature

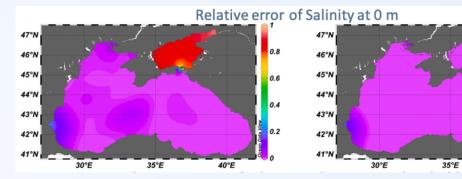
Autumn Salinity

"outliers"

- 20.0

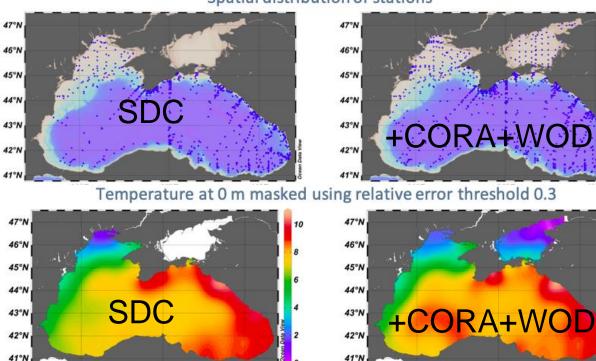
- 17.5

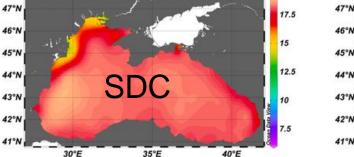

76 - 0.0 m


to DIVAnd due to large dataset (~200 M data) ¹¹

sdn-userdesk@seadatanet.org - www.seadatanet.org

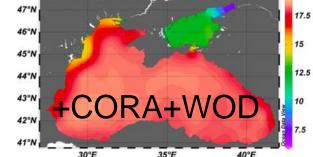
Results (BLS)


1955-1964 decade



Impact of addition external data sources \rightarrow relative error decrease elimination of the areas where relative error exceeds²³⁰%

Spatial distribution of stations


Salinity at 0 m masked using relative error threshold 0.3

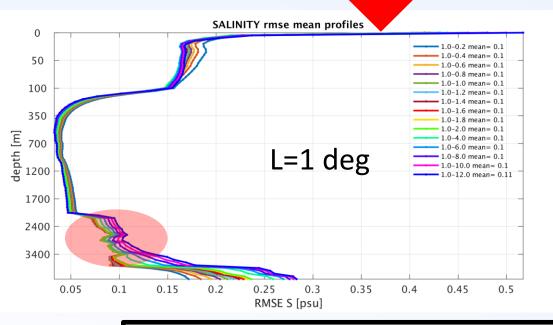
35°E

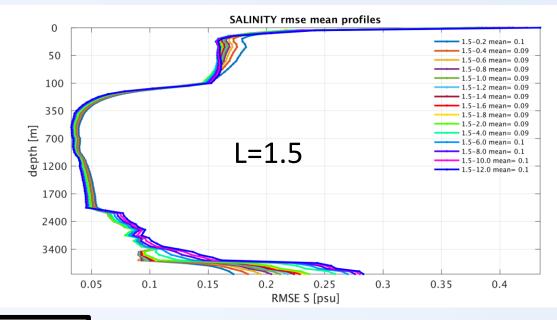
30°E

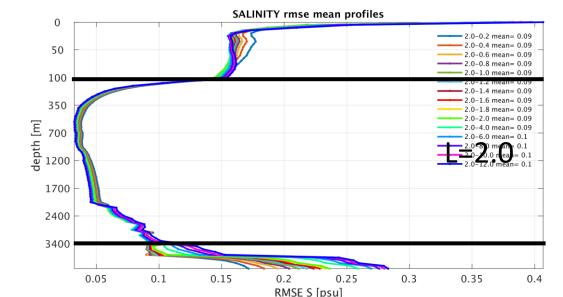
40°E

30°E

35°E

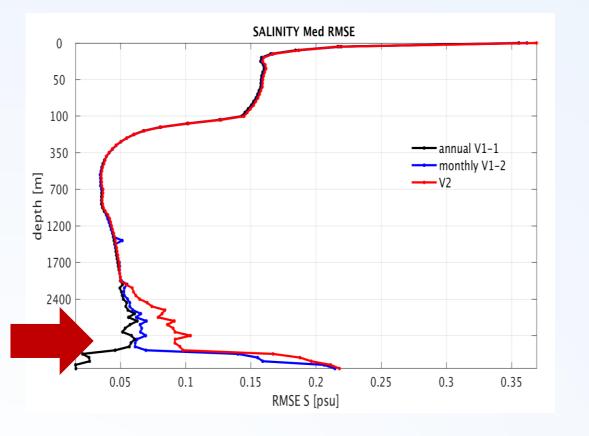

40°E

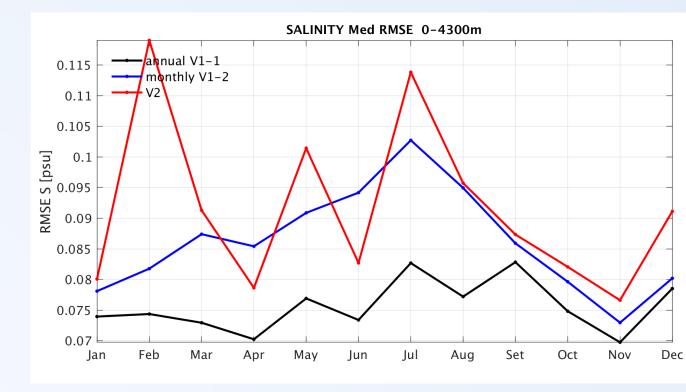

40°E


Preliminary Results (MED)

	12	Synthetic Experiments using															
- [11	C	CMEMS Med Reanalysis data set 1987-2018														
	10																
	9 https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004																
	8																
	7	 analyses with mean subtracted as reference matrix of RMSE vs MEDREA 															
	6					f % e						ME	DSEA_RE	ANALYSI	S_PHYS_	006_004	
	E.							aiduu				ME		N SEA PHY	SICS REAN		MED
	5					f RM		sidua	315				SSH 3DUV		•••		Potential Temperature [°C] 01.01.2015 00:00 UTC
	4			 hov 	moll	er plo	ts					0.06	63 degree x 0.0	063 degree ((72 depth lev	els)	479
				• erro	or fiel	ds						Fror	m 1987-01-01	to 2018-12-3	31		SPN SPN
	3				c at ii	otora	าทมว	lvari	ahility	/ (mo	nthe)	daily	y-mean,month	ly-mean			2014
	2		 look at interannual variability (months) look at the skill along the water column 														
	1																
		.2	.4	.6	.8	1.0	1.2	1.4	1.6	1.8	2	4	6	8	10	12	
	epsilon2																

Preliminary Results (MED)



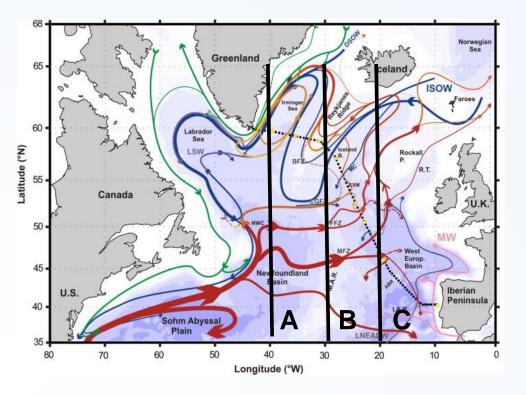

RMSE computed versus MEDREA climatology

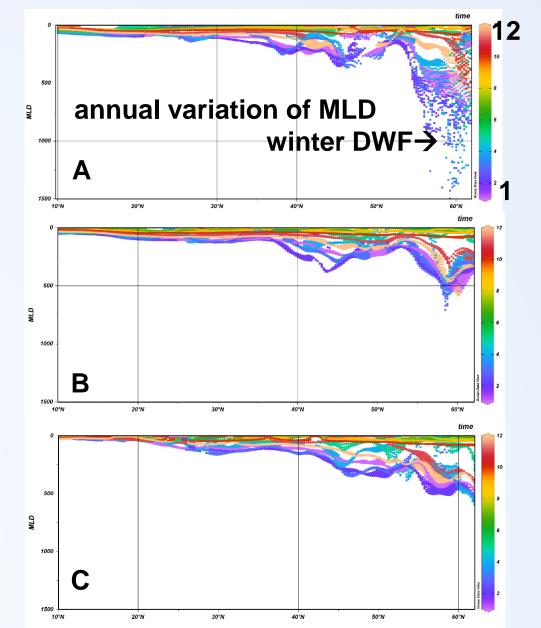
- 3 layers for S
- 1. 0-100m → 0.6<epsilon2<8.0
- 2. 125-3300m \rightarrow small sensitivity
- 3. 3400m-bottom \rightarrow epsilon2<1.6

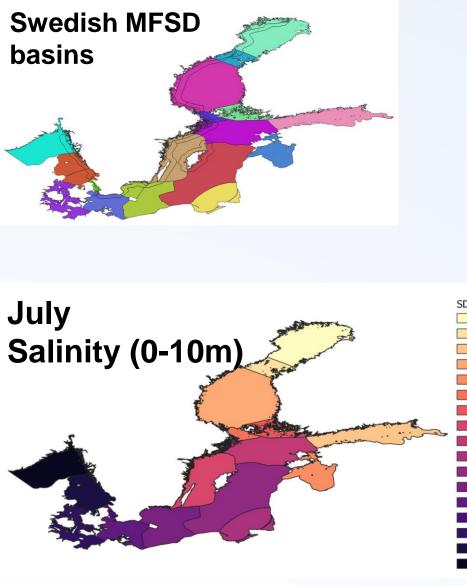
introducing a background field L=2, epsilon2=1.2

Preliminary Results (MED)

- finishing to analyze the experiments, L optimization, cross-validation results
- integrating SDC_V2 with CORA5.2
- \rightarrow production

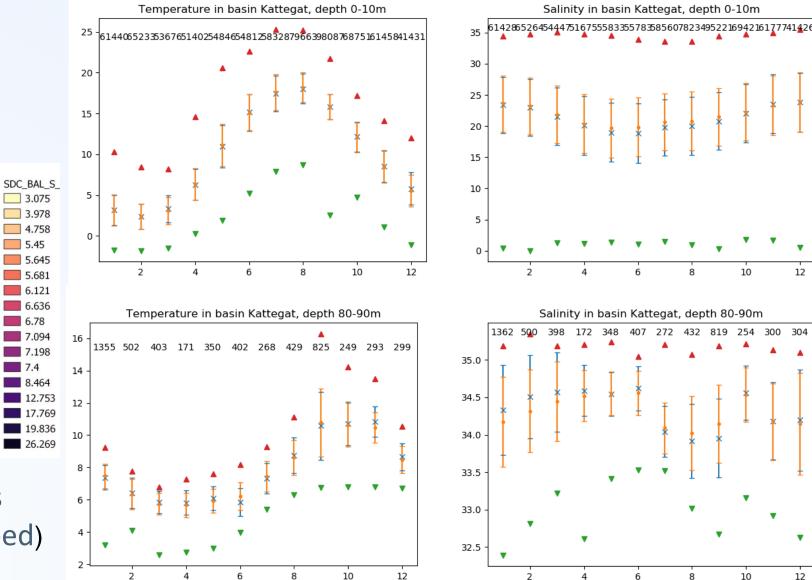

New Data Products


SDC_GLO_DP1	Density and BV fields (2003-2017)	ongoing
SDC_GLO_DP2	AOU at 1/4° (2003-2017)	
SDC_BAL_DP1	regional and sub-regional T and S monthly stats	ongoing
SDC_NAT_DP1	Monthly climatology for MLD at 1/4°	ready
SDC_MED_DP1	Monthly climatology for MLD at 1/8°	ongoing
SDC_MED_DP2	OHC time series and trend (0-700m; 0-2000m)	ongoing
SDC_BLS_DP1	Monthly climatology CIL cold content at 1/8°	
SDC_BLS_DP2	Decadal seasonal CIL cold content at 1/8°	ready
SDC_BLS_DP3	sliding decades CIL cold content at 1/8°	
SDC_ULG_DP1	Currents climatologies from HF radars	ready


NAT MLD monthly climatology (1/4°)

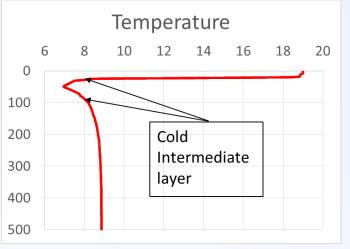
Deep winter MLD (depth where T variation > 0.5°C with respect to the 10m depth) set ocean's subsurface properties in regions of deep and intermediate water formation

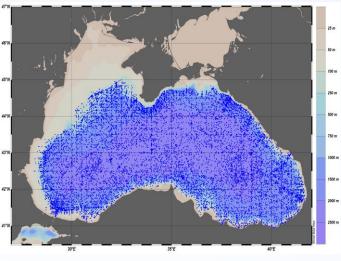
SeaDataCloud



Probably published as txt files with shapefile for basins (zipped)

BAL T and S monthly statistics



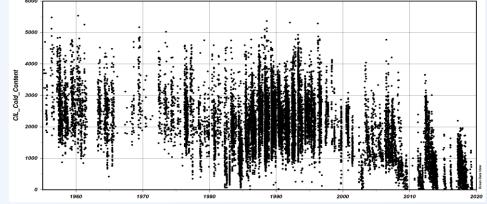

10

10

12

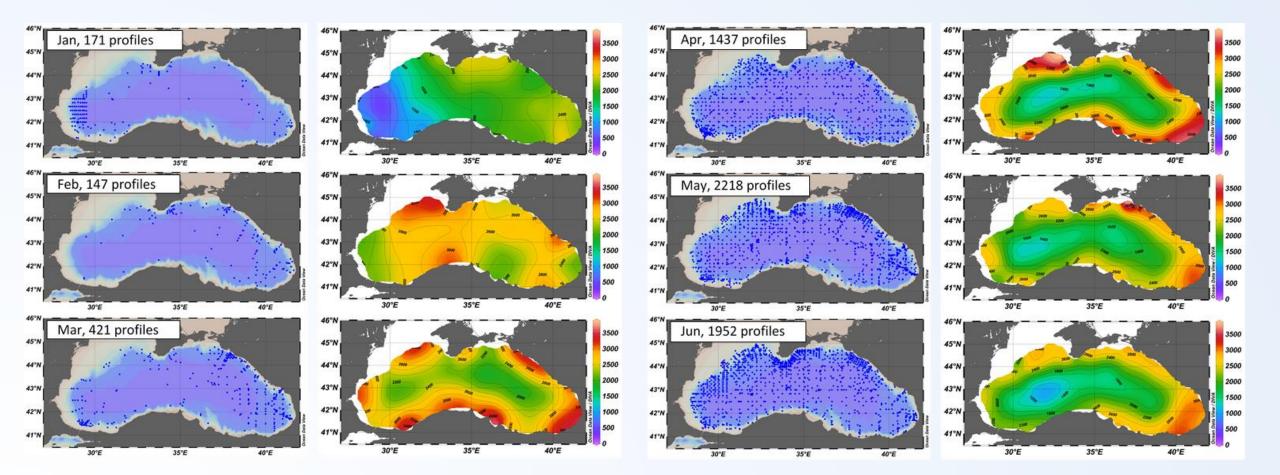
12

BLS CIL cold content (1/8°)

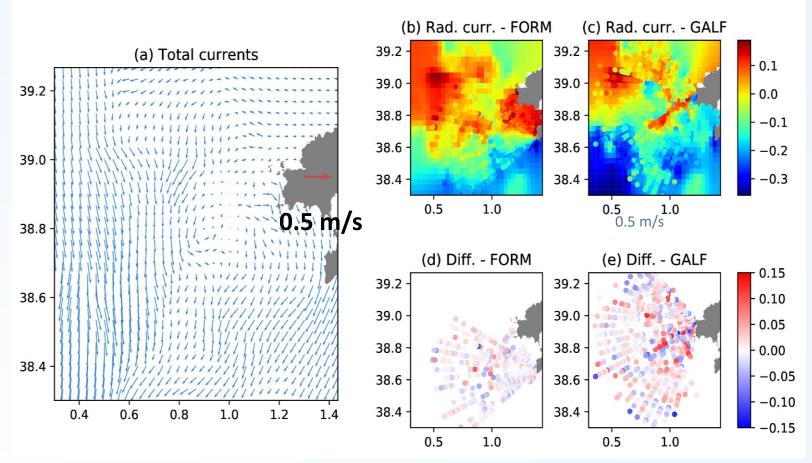

CIL is the layer with T < 8C $^{\circ}$ in subsurface waters

 \rightarrow occurs in depth range up to 200 m

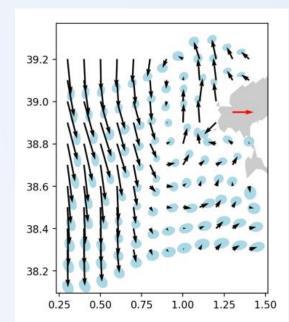
Climatic changes in the last two decades \rightarrow the CIL T are gradually increasing, while CIL volume is decreasing up to total disappearance in certain areas and periods


→ to get unbiased assessment of CCC monthly field the analysis period was limited to 1955-1999

BLS CIL cold content (1/8°)



High-frequency radar surface currents using DIVAnd (ULG)


- DIVAnd \rightarrow additional dynamic constraints relevant to surface currents, imposing a zero normal velocity at the coastline, a low horizontal divergence of surf currents, temporal coherence and simplified dynamics based on the Coriolis force and the possibility of including a surface pressure gradient
- radial currents from two radar sites are combined to derive total surf currents in the Ibiza Channel and then compared to the cross-validation data set and to drifter observations
- impact is evaluated by cross-validation using the HF radar surface current and drifter observations from SOCIB

High-frequency radar surface currents using DIVAnd (ULG)

3D_Coriolis_pgrad - 2014-10-03T03:00:00

Reconstructed current velocity: (a) analysed total currents (b-c) radial currents (HF radar measurements and reprojected analysis) for the two HF radar sites (d-e) difference between the HF radar measurements and the reprojected analysis

Barth et al. submitted to Ocean Dynamics arrows: reconstructed mean current velocity ellipses: temporal variability

Conclusions

- V1 and V2 climatologies integrating external data sources released in SDC → major upgrade
- new data products explored the potential of SDN data and tools providing interesting results
- the workflow has been established (V1), improved (V2) but still room for optimization
- each climatology and new product, its methodology and validation has been described in the PIDoc
- double stage revision in order to assure good quality of product and documentation
 → increase user confidence and uptake
- massive DIVAnd testing
- data integration process has been improved including metadata track of external data