Sea DataCloud – Riga, Latvia - 2016/12/01 WP8.3 Review of data formats, with consideration of

INSPIRE data models

RAYMOND CRAMER
BRITISH OCEANOGRAPHIC DATA CENTRE
(RNC@BODC.AC.UK)

Objectives

WP8.3 : To review and expand the SeaDataNet data formats to achieve INSPIRE compliance.

INSPIRE

- The INSPIRE Directive aims to create:

 an European Union (EU) spatial data infrastructure
 enable the sharing of environmental spatial information among public sector organisations
 facilitate public access to this data across Europe.
- Implementation requires
 harmonised, common data models
 standardised ways to share the data (publish the data, encode metadata, format data)

SeaDataNet supported formats

The following data transport formats have been defined under SeaDataNet:

ODV4 and NetCDF with CF compliance for profiles, time series and trajectories MedAtlas as an optional format

Feature types have been defined for multiple trajectories data like

moored ADCP (Feature type = timeSeriesProfile)

shipborne ADCP (Feature type = trajectoryProfile).

SeaDataNet data format extensions

SeaDataNet NetCDF implemented extensions to CF:

```
sdn_parameter_urn = "SDN:P01::PSLTZZ01";
sdn_parameter_name = "Practical salinity of the water body";
sdn_uom_urn = "SDN:P06::UUUU";
sdn_uom_name = "Dimensionless";
```

SeaDataNet ODV implemented extensions:

```
<subject>SDN:LOCAL:Depth</subject>
<object>SDN:P01::ADEPZZ01</object>
<units>SDN:P06::ULAA</units>
<instrument>...</instrument>
```


SeaDataNet D8.2/D8.3

The use of O&M can be seen as a bridge between CDI and SensorML.

Developed within Geo-Seas and supported in SeaDataNet for Seismic data handling.

Discovery is granted by the CDI one

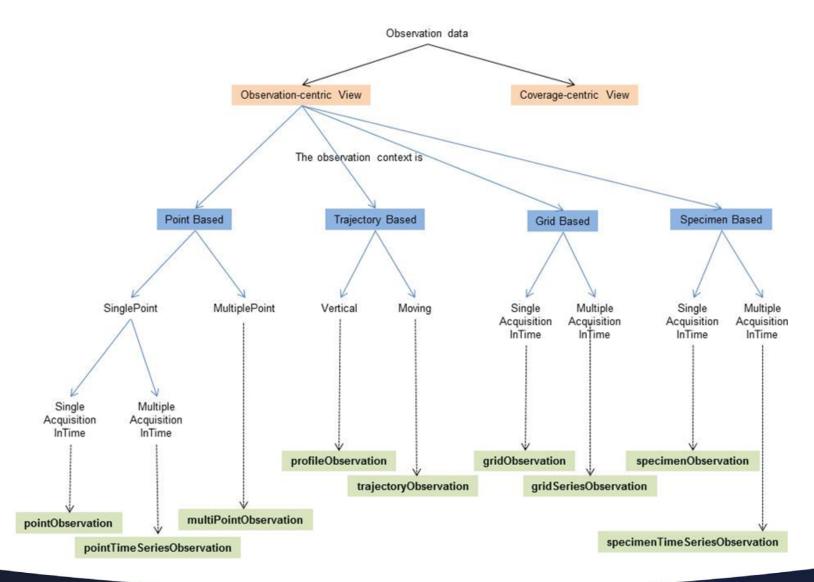
to

Data access is handled by the O&M part one

to

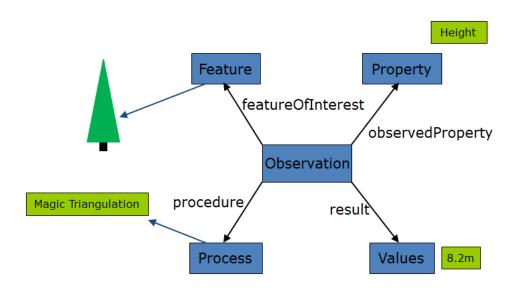
Browsing is handled by SensorML many

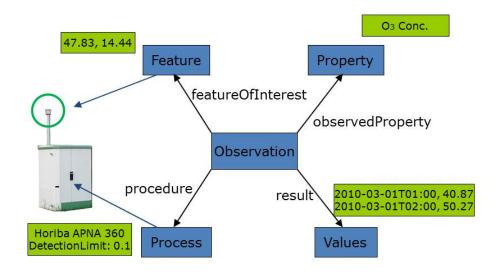
WP8.3 will review the SeaDataNet profiles, time series and trajectories to build on this work.


Working towards INSPIRE compliance

Design Patterns – Dimensionality

Point	Single Result in Time Multiple Results in Time	point points time series	pointObservation pointTimeSeriesObservation multiPointObservation
Curve	Single Result in Time	profile	profileObservation
	Multiple Results in Time	trajectory	trajectoryObservation
Surface	Single Result in Time	grid	gridObservation
	Multiple Results in Time	grids	gridSeriesObservation
Specimen	Single Result in Time	specimen	specimenObservation
	Multiple Results in Time	specimens	specimenTimeSeriesObservation





O& M design patterns

pointObservation

pointTimeSeriesObservation

Objective: Evaluate the O&M data model/schema for data types.

Action: Examine reference data files and determine mappings with the O&M

guidelines/design patterns.

Pressure/Depth profiles

Point time series

Trajectory

Profile time series

Profile collection

Objective: Evaluate the O&M data model/schema for data types.

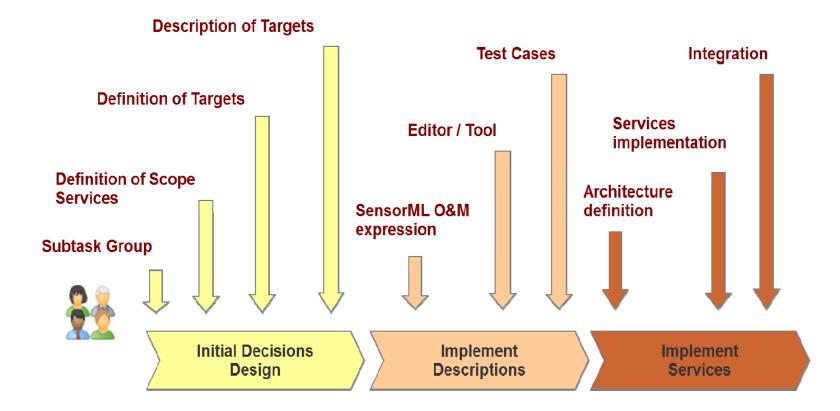
Action: Examine reference data files and determine mappings with the O&M

guidelines/design patterns.

Pressure/Depth profiles

Point time series

Trajectory


Profile time series

Profile collection

Grid – this profile requires mapping for CF compliance

Task : Review of data formats		МЗ	M6	M9	M12	M15	M18
Fit to an O&M data model/schema							
Definition of scope services/targets							
Assess O&M metadata requirements							
Description of targets							
Create O&M data type schema							
O&M expression							
Populate O&M with metadata/data							
Test cases							
Create Grid profile for NetCDF (CF)							
D8.6							

Partners

BODC British Oceanographic Data Centre, UK

CNR National Research Centre, Italy

SYKE Finnish Environment Institute, Finland

CSIRO Commonwealth Scientific and Industrial

Research Organisation, Australia



Deliverables

D8.6 Review of data formats, also considering INSPIRE data models (M12)

References

http://inspire.ec.europa.eu/

SDN2_D82_D83_WP8_SensorML_OandM_profiles_v2.docx SDN2_D94_WP9_SWE-CDI-portal.docx

D2.9_OM_and_SWE_Guidelines_v3.0_Final_Draft.doc

